



Abstract — The paper is devoted to approach of semantics

adjustment for UCM (Use Case Maps) time and multithread

constructions and their translation into Basic Protocols notation.

Analysis of specification languages is presented. Based on the

analysis UCM language is selected as the most perspective, powerful

and user friendly language for development of software systems

formal models.

A set of UCM constructions are described in the scope of the

paper these are multithreading, delays and interruptions. UCM

language is very powerful, but semantically incorrect models still can

be created for described constructions. Authors propose a set of

extensions and limitations which allow to solve problem of incorrect

models creation.

Results of proposed limitation implementation in a set of projects

are presented.

Keywords — UCM semantics, timers, delays, behavioral tree,

synchronization, threads generation.

I. INTRODUCTION

OFTWARE system development starts with creation of

requirements. Documents describing requirements

specifications are generally written in natural language and

may contain hundreds and thousands of requirements. Initial

specifications often contain errors related to discrepant,

incomplete and nondeterministic system behavior. Searching

and fixing errors in requirements are more effective at early

stages of the development [1].

It is almost impossible to manually analyze industrial

systems specifications on errors presence without supporting

toolset. Existing systems of verification and testing do not

work with informal specifications. Thus the actual task is

formalization of initial textual requirements using input

languages of the tools for verification and testing.

One of the perspective integrated technologies of testing

automation and symbolic verification based on formal models

is VRS/TAT technology [2]. The technology uses UCM [3]

notation for high level description of behavioral application

models and tools for automation symbolic verification and

test scenarios generation based on basic protocol language [4].

UCM specifications language is standardized, however

contains a number of inaccuracies which do not allow

displaying the modeled systems semantics unambiguously and

correctly.

Proposed in this paper are restrictions on development of

multithread models of the systems as well as adjustments of

semantics of UCM language constructions for modeling time

delays and interruptions.

II. COMPARISION OF SPECIFICATION LANGUAGES

Our comparative analysis of 9 widely used in the industry

specification languages for software development considers

the following 6 criteria:

 IF – Initial Formalization – can the language be used at

the earliest stages of system’s design development?

 VI – Visibility and Intuitiveness – does the language

allow the user to easily visualize the system behavior at

various levels of abstraction?

 ESP – Explicit Support of Parallelism – does the

language contain semantic constructs which allow the

user to explicitly express parallelism in the system

behavior?

 EST – Explicit Support of Timing – does the language

contain constructs for explicit expressing of timing

constraints and dependencies?

 TL – Target Language – whether the language may be

directly used as the input language for analysis,

verification, and code generation by certain tool?

 TS – Tools Support – what tools and editors support

the language?

The 9 languages considered for analysis were MSC [5],

SDL [6], UML [7], Basic Protocols [8], Promela [9],

Lotos [10], VDM-SL[11], RSL [12], UCM[3]. Summary

results are presented in the Table 1.

Based on the above criteria, UCM was selected as the user-

oriented and applicable at early stages of development among

the considered alternatives. Using UCM, customers and

Restrictions to time constructions of UCM

formal model and their translation into Basic

Protocols language

Pavel Drobintsev
1
, Igor Nikiforov

1
, Nikita Voinov

 1
, Vsevolod Kotlyarov

 1
,

 Alexandr Letichevsky
2

1 Saint-Petersburg State Polytechnic University, Russia,
e-mail: igor.nikiforovv@gmail.com

2 Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine

e-mail:let@cyfra.net

S

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 69

mailto:vpk@spbstu.ru
mailto:vpk@spbstu.ru

developers can achieve maximal mutual understanding of the

architecture and design of the system pretty soon.

Although the language of Basic Protocols is enough

powerful [13] for automated analysis and test scenarios

generation, it is not as transparent as UCM and assumes a lot

of low-level details, which make it difficult to use, especially

for the customer expected to understand the system design in

general.

 help a developer to predict complicated system

behavior;

 provide convenient notation for depicting parallel

structures, timers, interruption points on the diagram

and aspects using.

Table 1. Comparative Analysis of Formal Languages for

Specifications

Criteria\

Languages
IF VI ESP EST TL TS

MSC –/+ + + + +
Telelogic TAU G2, TTCN,

VRS, TAT

SDL –/+ –/+ –/+ + + Telelogic SDL, TTCN

UML –/+ –/+ –/+ + + Telelogic TAU G2

Basic

Protocols
–/+ –/+ –/+ –/+ –/+

VRS/TAT

Promela –/+ –/+ –/+ –/+ Spin

Lotos - - + –/+ –/+ LOTOS

VDM-SL - - –/+ –/+ + VDM, VDM Eclipse

RSL - - –/+ –/+ + RAISE

UCM + + + + –/+ jUCMNav

Legend: “–“ – not supported; “–/+”– partially supported; “+”– supported

This becomes a showstopper for reconciling further work

directions between the customers and developers which could

lead to waste of efforts and increasing of software

development cost.

In contrast to Basic Protocols, UCM notation is intuitively

clear for a wide range of users – this simplifies negotiation

between the customers and developers; however, its

disadvantage is lack of a reliable tool to check correctness of a

behavior model in UCM and to automatically derive test

scenarios from it.

The above comparison suggests that combining both UCM

and Basic Protocols within a single technological chain can

achieve the maximal effect in creation and analysis of formal

behavior models of complex systems.

III. USE CASE MAP

Use cases describe sequences of actions performed by a

system in response to external impact from users or other

software systems (components). Use cases reflect system

functionality from system architecture description point of

view. They introduce important components in software

systems development process [14], namely:

 fill in the gap between textual requirements

description and detailed system design;

 allow developing system architecture on high level of

abstraction as well as specifying system behavior

when architecture is already defined;

System design in UCM language is presented as a set of

diagrams interacting between each other. Each diagram in turn

focuses on the description of the components (agents, system

processes), objects, observers and subsystems interaction.

Each component and subsystem contains elements of

responsibility (Responsibilities) corresponding to some events

in the system as well as strictly defined sequence of their

occurrence.

Using elements of UCM notation not only linear behavior

can be specified but also parallel scenarios (AndFork) with

their further synchronization (AndJoin) can be described.

FailurePoint element participates in the description of the

interruptions generation and processing mechanism. Timer

element is used to specify the system timer behavior both for

cases with simple time delay and for cases with complicated

logical behavior.

Also is worth noting a structuring element (Stub) which

allows creating hierarchical system representation and

performing the software development by components from the

highest level of abstraction to detailed description of low level

diagrams.

Thus the aggregation of components and diagrams provides

visible representation of the system behavior and system’s

components interaction to the user.

UCM diagram is developed using UCM Navigator [15]

graphical editor. Fig.1 shows a fragment of UCM diagram for

real telecommunication project where high level behavior of

the agent modeling automatic telephone station is described.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 70

Figure1. UCM diagram with automatic telephone station module

behavior.

IV. RESTRICTIONS OF MULTITHREAD SYSTEMS

DEVELOPMENT

Working with the acting UCM standard Z.151 [3] we found

that it contains a number of inaccuracies hampering the

modeling of multithread systems. In the following subsections

we discuss them in details and provide examples.

Brackets balance in parallel threads specification

Consider a case when syntactically correct elements of

threads generation and synchronization can cause a violation

of parallel threads structure and consequently an incorrect

system behavior.

In Fig.2 after AndFork_A and AndFork_E elements

generation of threads B, E and F, G respectively is performed,

while on AndJoin_C and AndJoin_D elements synchronization

of threads B, F and C,G respectively is performed.

Figure 2. Violation of parallel threads structure.

It is easy to notice that synchronization of threads generated

by different elements significantly complicates the mechanism

of error detection and fixing in the system, as well as

complicates the tracking of parent/child connection in the

threads hierarchy. Such connections are useful when child

thread keeps executing after parent thread has finished.

System behavioral graph with correct structure of threads

generation and synchronization is depicted in Fig.3.

Figure 3. The graph with correct threads structure.

Threads structure analysis can be compared with the

analysis of mathematical expressions brackets format. If

expression brackets format is violated, it is considered to be

syntactically incorrect. This is also valid for parallel threads

modeling: if threads structure is violated, the whole system is

considered to be syntactically incorrect.

Analyzing threads for errors detection and fixing allows

creating syntactically correct system models.

Unlimited generation of threads

Consider the case shown in Fig.4. Threads B and E are

generated after D element. Thread B is finished on EndPoint

element. Thread E is returned through the cycle, which has no

condition of iterations limits, and D element and generates

new threads B’ and E’. The behavioral scenario is repeated for

thread E’.

Figure 4. Unlimited generation of threads

Unlimited cycles lead to generation of unlimited number of

unfinished threads which leads to shortage of memory and

other resources. Thus it is important to introduce restrictions

on usage of such constructions in developed models.

Data racing while accessing shared resources by parallel

processes

Consider the case when shared resources are used on the

parallel branches without synchronization. Fig.5 depicts two

parallel threads using ―var‖ shared resource without

synchronization. Such formalization leads to racing while data

accessing [15].

Figure 5. Shared resources without synchronization.

There are two executable scenarios in the model:

1) If ―E‖-‖F‖-‖G‖-‖WP‖ scenario is executed, ―D‖

element will never be applied. This scenario leads to

a deadlock.

2) If ―E‖-‖F‖-‖WP‖-‖G‖ scenario is executed, ―D‖

element can be applied and this scenario will reach

EP end point.

Deadlock can be avoided by introducing synchronization

and thus excluding parallel access to shared system resource

(Fig.6).

Figure 6. System model with synchronization.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 71

Proposed restrictions on multithread systems development in

UCM

 Using parallel constructions with violated threads

structure is not allowed.

 Using unlimited recursive threads generation is not

allowed.

 Using shared resources on parallel execution paths

without synchronization is not allowed.

V. MATHEMATICAL RESTRICTIONS MODEL

To automatically check UCM model for restrictions on the

parallel threads specified in section IV we propose to use

formal specification of a thread as well as mathematical

specifications of incorrect cases which are implemented in the

algorithm of automatic analyzing of UCM model.

To analyze UCM diagram we shall introduce a formal

specification of a thread.

Statement 1. Let thread T be a quaternion

),,,(ECPST 
,

where S is the element on a diagram which initiates the

thread; P is a set of all threads which are parents of this thread;

C is a set of all threads which are child of this thread; E is a set

of elements on a diagram which are included into this thread.

Statement 2. Let ―parents‖ of the thread be the threads

which have led to creation of this thread. The thread may not

have parents in case this is the start (main) thread.

Statement 3. Let ―children‖ of the thread be the threads

which are initiated of this thread. The thread does not have

children in case this is the end thread which leads to EndPoint.

Each restriction can be specified as mathematical formula.

If this formula is true for all system threads, the UCM diagram

is considered to be incorrect.

Introduced specification of a thread as well as following

specifications are used for mathematical specifications of

restrictions:

ai
TT 

— the i-th thread, contained in all a
T

 threads of

UCM model, where Ni :1 ;

jS

i
T

— the i-th thread, created on the element j
S

, where

SS
j


;
next

j

n

i
SS 

— UCM element

next

j
S

, which is

reachable from element i
S

 in n steps;

ji
CT 

— the thread i
T

 creates the child thread j
C

;

ji
TT 

- the thread i
T

 is synchronized with the thread j
T

;

i
TR

- the thread i
T

 uses the resource R .

Introduce mathematical specifications for incorrect

conditions.

Unlimited recursive creation of threads is specified by the

following formula

)(&)(&)()(0

mim

N

ja

S

ka

S

i
SSSSTCTT mj  

,

which is translated into natural language as follows:

- let i
T

 be a thread from the set of all threads a
T

 and

created on the element j
S

; if true that i
T

 creates child thread

k
C

 on the element k
S

 given that k
S

 is reachable in N steps

from j
S

and elements k
S

 and j
S

 are the same element of the

diagram, then such diagram is considered to be incorrect..

Usage of parallel constructions with violation of threads

structure is specified by the following formula:

)(&)()(
kia

S

ka

S

i
CTTCTT mj 

,

which is translated into natural language as follows:

- let i
T

 be a thread from the set of all threads a
T

 and

created on the element j
S

; if true that i
T

 is synchronized with

the thread k
C

 created on the element k
S

 given that k
C

 is a

child thread for i
T

, then such diagram is considered to be

incorrect.

Mathematical specification of shared resources usage

without synchronization on parallel execution paths is the

following:

)(&)(&)(||)(
jiajai

TRTRTTTT 
,

which is translated into natural language as follows:

- if two parallel threads i
T

 and j
T

 from the set of all

threads a
T

 modify shared resource R , then such diagram is

considered to be incorrect.

Implemented is the library for analyze of parallel threads on

UCM diagram based on the algorithm of search and

specification of incorrect situations. The scheme of the

algorithm is presented on Fig.7.

Figure 7. Algorithm of UCM model analyze

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 72

The algorithm contains 4 steps:

— traversing all elements on UCM diagram. On this step all

elements on UCM diagram are traversed and lists of global

start points, threads creation points and synchronization points

are created. Global start point is StartPoint element which is

not connected with start points of Stub elements (i.e. it is not

contained in paths hierarchy);

— marking UCM diagram with threads. UCM diagram is

traversed from each global start point to next elements until

EndPoint is reached. While traversing the parts of the paths

are marked with threads. Initially the algorithm marks the path

with the thread created on start point. If thread creating

element or threads synchronization were met during traversal,

a new thread is added into threads array and path marking

proceeds with new thread;

— analyze of links and relations between threads. The

analyzing and selection of places on UCM diagram where

corresponding specifications of incorrect situations are

performed based on formulas specifying incorrect situations

and paths array generated on this step;

— logging the information about potentially dangerous

places detected on the step.

The research proved that proposed specifications of

restricted constructions and the library for analyzing

implementing the algorithm of automatic detection of

incorrect UCM constructions allow to find potentially

dangerous places and errors in UCM model.

VI. FEATURES OF TIME DELAYS MODELING

Requirements of time delays often occur in the industrial

systems. In this case it is about the modeling of the relative

time – the time between events. Events are the change in the

system attributes values.

Features of timer usage

According to the standard [3] two outgoing paths are

connected with Timer element (Fig.8): regular path (RP) and

timeout path (TOP). For selecting each path there are

conditions CRP and CTOP respectively. Also there is a trigger

path (or trigger counter) which affects timer behavior and

allows to cancel the delay.

Figure 8. UCM diagram with Timer element

In Z.151 standard semantics of the elements modeling time

delays contains cases description of model possible behaviors

depending on the occurred events, but does not describe which

types of events are associated with timers and does not specify

types of some events specific for telecommunication

applications specification.

Extend timer semantics description

Extend UCM timer semantics description with the

following events:

 Timer set: TIMER_SET <timer name>. The event

occurs when Timer element is reached.

 Timer expiration: TIMER_EXPIRE <timer name>.

The event occurs after CTOP condition has been

executed.

 Timer reset: TIMER_RESET <timer name>. The

event occurs after RP or TOP path has started

execution or at trigger event occurrence.

Using semantics of Timer element and associated events

three types of time delays can be stated:

1) simple delay, whose modeling feature is strictly

specified conditions of outgoing paths (false) and

absence of trigger event;

2) interruption delay, whose modeling feature is

presence of trigger event;

3) interrupted execution delay, whose modeling feature

is presence of FailurePoint interruption on timeout

path.

Proposed extension of UCM timer semantics by timer set,

expiration and reset allowed solving the delay description

problem for telecommunication projects.

VII. FEATURES OF INTERRUPTIONS MODELING

There are two types of interruptions in requirements: local

interruptions, affecting behavior of a specific function or

object, and interruptions, affecting behavior of other system

threads. Each interruption shall have a corresponding handler.

Interruptions are modeled by the group of elements [3]:

FailurePoint, AbortStartPoint and FailureStartPoint. Fig.9

depicts a simple UCM diagram modeling an interruption with

the handler.

Figure 9. UCM diagram modeling an interruption with

handler

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 73

When FailurePoint (grounding symbol) is reached,

interruption occurrence condition is calculated. Call it

FailureCondition. If calculation result is true, then the

execution flow with FailurePoint will be interrupted and a flag

of interruption occurrence (call it FailureFlag) will be

enabled.

As soon as FailureFlag equals true, conditions calculation

on all interruptions handlers is performed: FailureStartPoint

and AbortStartPoint. Handler types behavior is described in

the standard [3].

The main difference between two types of handlers is the

impact on parallel threads, affected by the interruption. In case

of FailureStartPoint only interruption of the thread which

reached FailurePoint is performed. In case of AbortStartPoint

interruption of all threads which belong to FailurePoint

activity area is performed. Call this set AbortScope.

Usage of any of the considered elements introduces the

enormous number of system behaviors, which need to be

checked during verification. In general case checking of all

possible execution variants is impossible due to states

explosion problem.

For all elements from the AbortScope set it is required to

check interruption occurrence which means to perform

interleaving of all cases where interruption can occur.

Proposed are three approaches which can be used either

separately or supplement each other:

1. Checking behaviors on the bounds of linear parts of

paths and in the points of common resources sharing.

For this purpose the analysis of the paths and

elements set from FailurePoint activity area is

performed as well as key points where behavior shall

be checked are specified. Combination of all possible

behaviors is performed for these points only.

2. User check. User marks his check points on the

diagram with a marker.

3. Default check, i.e. verification will be performed for

all elements of the set. This case can be only used

after manual introduction of restrictions on the set

of verified elements [17], otherwise states explosion

is inevitable.

Worth noticing, that the first two approaches are enough to

balance the time of verification and required coverage level. In

general case usage of proposed approaches allowed to

effectively solving the problem of interruption description in

telecommunication projects.

VIII. CONVERSION OF TIME DELAYS INTO BASIC PROTOCOLS

For VRS/TAT toolset for verification and testing a tool for

translation of models in UCM language into models in basic

protocols language was developed [18,19,20]. UCM→BP

translator implements the conception of time delays and

interruption conversion as well as checking of formulated

restrictions on multithread systems development.

Consider the features of some constructions translation

important for specification of real-time applications.

For Timer element there is timer_var attribute, which is

responsible for timer state and assigned two possible values:

true — if the timer is set, false – if the timer is reset. By

default the value is false.

In basic protocol for Timer element responsible for timer set

timer_var:=true expression is generated in postcondition

while TIMER_SET expression is generated in the process

field of basic protocol.

For each outgoing path (RP and TOP) from Timer element

a single basic protocol is generated.

Precondition of the basic protocol for RP path (expression

for selection of regular path) is generated in accordance with

logic formula derived based on [13]:

(timer_var=true)&(CRP)

(timer_var=true)&(trigger)&(CTOP) (1),

where trigger is a logic expression for trigger event.

TIMER_RESET action is generated in the process field of

basic protocol.

In postcondition of this basic protocol the expression

modeling timer reset is generated: timer_var:=false.

Consider a basic protocol for timeout path (TOP). In

general case the following expression is generated in

precondition:

(timer_var=true)&(~CRP)&[(CTOP

(~trigger)&(~CTOP)] (2)

TIMER_EXPIRE and TIMER_RESET operations are

generated in the process field of the basic protocol for TOP

path.

Thus, conversion of time delays implies generation of three

basic protocols with different logical expressions in

precondition.

For each considered case of timer modeling optimization of

logical expressions is possible as the values of used conjuncts

and disjuncts is known beforehand.

IX. CONVERSION OF INTERRUPTIONS IN UCM LANGUAGE

INTO BASIC PROTOCOLS

Two basic protocols are generated in basic protocols

notation for elements modeling interruptions (FailurePoint).

The first protocol is for regular execution path with negation

of interruption occurrence ~(FailureCondition) in

precondition.

The second protocol contains checking of interruption

occurrence FailureCondition in precondition and a flag in

postcondition signaling that the interruption has occurred –

FailureFlag:=true.

For all handlers of interruptions: FailureStartPoint and

AbortStartPoint a new execution flow will be created, the first

protocol for each of them will contain checking of interruption

occurrence in the system in precondition as well as expression

for this handler enabling, call it HandlingCondition.

(FailureFlag_1 = true) (FailureFlag_2 = true...

(FailureFlag_n = true) & (HandlingCondition) (3)

For all protocols generated for elements of AbortScope set

~(FailureFlag=true) expression is added to precondition

which means that flow execution will continue until exception

will occur.

Using approaches to translation of time delays and

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 74

interruptions a conversion principle of time delay with

FailurePoint element can be described. For this case generated

are a basic protocol for timer set, two basic protocols for timer

exit and two protocols for FailurePoint element.

Herewith the condition of interruption event occurrence is

added to protocols which lead to FailurePoint.

X. RESULTS

Manual creation of basic protocols for multithread UCM

When translator is used for formalization, basic protocols

describing the structure and behavior of the system are

generated automatically.

Implemented rules to obtain fields of basic protocols allow

avoiding syntax and semantics errors while generating basic

protocols.

Automatically generated fields are the following:

— basic protocols names;

— key agents;

— instances description;

— agents states in pre- and postconditions;

— control variables required to save control flow and

synchronization;

— process fields;

— signals;

— local variables declaration fields;

— local variables initialization fields;

— comments.

UCM2FM tool was applied in number of experimental

projects. Table 2 contains time characteristics of formal

model creation from UCM specifications using manual and

automatic formalization methods in three projects.

Table 2. Manual and automatic approach comparing.

models containing time delays and interruptions is very time-

consuming and laborious process which demands accuracy

and deep experience in specific language of basic protocols.

Average time on a single basic protocol creation is 20

minutes but this is an optimistic estimation for those cases

when there are no uncertainties in requirements while creating

a formal models.

 Results obtained with VRS/TAT technology usage after

integration of the tool for automated translation of UCM

model into basic protocols model show that the time has

decreased in 2,5 times in comparing with manual creation of

basic protocols. Fig.10 contains values of spent time reduction

in miscellaneous projects achieved by usage of innovative

technology for basic protocols automated generation.

Figure 10. Time saving on creation of a single basic protocol

XI. USAGE EXAMPLE

Using of proposed UCM semantics adjustments in the

project for telecommunication project presented on Fig.11 (the

project was obfuscated due to business requirements) allowed

translating of the set of UCM behavioral diagrams into 392

basic protocols, performing of model verification, generating

about 11 000 test scenarios and testing which reduced the

efforts on 26% in comparison with traditional approach of

manual testing.

Figure 11. UCM diagram for telecommunication project

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 75

XII. CONCLUSION

Considered in this work methods of semantics adjustments

of UCM standard elements, modeling time delays and

interruptions as well as restrictions on multithread systems

development allow modeling of complex telecommunication

systems reducing possibility to create semantically incorrect

model behaviors.

Methods are implemented in UCM→BP translator which

allows using of VRS/TAT technological chain more

convenient and effective for projects of middle and high

complexity.

Proposed translator together with supporting toolset of

VRS/TAT technology was applied in modules development of

telecommunications applications and has shown a significant

reduction of efforts on quality industrial software project

development.

REFERENCES

[1] Booch Gr., Maksimchuk R., Engel M., Young B., Conallen J., Houston
K. Object-Oriented Analysis and Design with Applications. Addison-

Wesley Professional; 3rd edition, 2007. 720 p.

[2] Veselov A.O, Kotlyarov V.P. Test automation in telecommunication

area // ―Scientific and technical sheets of SpbSTU‖. №4(103). Spb.:
SpbSTU publishing, -2010. - pp. 180-185.

[3] Recommendation ITU-T Z.151. User requirements notation (URN),

11/2008.

[4] Letichevsky A.A., Kapitonova Yu.V., Letichevsky A.A. (Jr) and others.

Systems specification using basic protocols // Cybernetics and system
analysis, 2005, №4. pp.3-21.

[5] ITU Recommendation Z.120. Message Sequence Charts (MSC), 11/99.

[6] M. Berger, J. Soler, L. Brewka, H. Yu, M. Tsagkaropoulos, Y. Leclerc,

C. Olma Methodology and Toolset for Model Verification,

Hardware/Software co‐simulation, Performance Optimisation and

Customisable Source‐code generation WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS E-ISSN: 2224-3402
Issue 6, Volume 10, June 2013, pp 169-178.

[7] Diem P. G., Hien N. V., Khanh N. P. An Object-Oriented Analysis and

Design Model to Implement Controllers for Quadrotor UAVs by

Specializing MDA’s Features with Hybrid Automata and Real-Time
UML // WSEAS TRANSACTIONS on SYSTEMS Issue 10, Volume

12, October 2013, pp.483-496

[8] Letichevsky A., Kapitonova J., Letichevsky A. (Jr)., Volkov V.,

Baranov S., Kotlyarov V., Weigert T. Basic Protocols, Message
Sequence Charts, and the Verification of Requirements Specifications,

ISSRE 2004, WITUL (Workshop on Integrated reliability with

Telecommunications and UML Languages), Rennes, 4 November.
2005. P. 30-38.

[9] Ka L. Man Formal Verification of SystemC Specifications Using SPIN

Proceedings of the 5th WSEAS Int. Conf. on Microelectronics,

Nanoelectronics, Optoelectronics, Prague, Czech Republic, March 12-
14, 2006 (pp.80-85).

[10] Salaun, G., Serwe, W.,Translating hardware process algebras into

standard process algebras - illustration with CHP and LOTOS ,

Proceedings of the International Conference on Integrated Formal

Methods, Eindhoven, The Netherlands, 2005.

[11] VDM // http://www.vienna.cc/e/evdm.htm .

[12] Milne R. The Proof Theory for the RAISE specification language.
RAISE Report REM/12, STC Technology Ltd, 1990.

[13] Yusupov Y. V. Integrated methodic of automated creation of C-

applications formal behavioral models from the source code. A thesis for

the title of the degree of technical sciences candidate. SPb.: SPbSTU,
2009. 176 p.

[14] Buhr R. J. A., Casselman R. S., ―Use Case Maps for Object-Oriented

Systems.‖ Prentice Hall, 1995.

[15] UCM Navigator -

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHo
me

[16] Gergel V.P. High-performance calculations for multiprocessor multicore

systems. Nizhny Novgorod: University of Nizhny Novgorod, 2010. –

544 p.

[17] P.Drobintsev, V.Kotlyarov, I.Chernorutsky. Test automation based on
user scenarios coverage. ―Scientific and technical sheets‖, St.Petersburg

university, vol.4(152)-2012, pp.123-126.

[18] Nikiforov I.V., Petrov A.V., Yusupov Yu.V. Generating formal model

of the system based on requirements specified in USE CASE MAP
notation // ―Scientific and technical sheets of SpbSTU‖. №4(103). Spb.:

SpbSTU publishing, -2010. - pp. 191-195.

[19] I.Anureev, S.Baranov, D.Beloglazov, E.Bodin, P.Drobintsev, A.Kolchin,

V. Kotlyarov, A. Letichevsky, A. Letichevsky Jr., V.Nepomniaschy,
I.Nikiforov, S. Potienko, L.Pryima, B.Tyutin. Tools for supporting

integrated technology of analysis and verification of specifications for
telecommunication applications // SPIIRAN works- 2013-№1-28P.

[20] I.Nikiforov, A.Petrov, V.Kotlyarov. Static method of test scenarios

adjustment generated from guides // ―Scientific and technical sheets‖,

SpbSTU, vol.4(152)-2012, pp. 114-119.

Vsevolod Kotlyarov - was born in Stavropol region of

Russia on the 14 July 1944. Hold a master degree with
specialty «Mathematical and computing instruments and

devices» of Saint-Petersburg State Polytechnic University

(SPbSPU) in 1968. Defended PhD thesis with specialty
―Software engineering‖ in 1972. Main areas of interests -

«Software engineering», «Technologies and tools of

automated verification and testing».
Since 1972 he is working as associated professor in SPbSPU, since 1995 as

senior researcher in St.Peterburg software development department of

Motorola, since 2008 as full time professor of SPbSPU. He is scientific
adviser of 20 PHD dissertations of post-graduate students. His scientific

school of ―Software Engineering‖ was included in the list of top schools of

St.Petersburg.
Prof. Kotlyarov became a M of IEEE and ACM in 1993, M of SABA (Science

Advisory Board Association) of Motorola Company in 2005. He is a member

of the program committees of the following conferences: Microsoft
Technology in Software theory and practice, SYRCOSE, Workshops of

Ershov informatics conference (PSI).

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 9, 2015

ISSN: 1998-0159 76

http://www.vienna.cc/e/evdm.htm

